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Executive Summary

The deliverable starts with a synopsis chapter. The second chaptés afettverable then d
scribes the evaluation results on a real four-tank system. Seven diftggproaches were testéd
and compared, including two centralized MPC, a decentralized MPC andi&itibuted MPC ap
proaches developed by the HD-MPC Consortium. Some qualitative prapeftieese controller
are compared and also experimental qualitative results are also shown.

In the third chapter, the state feedback Distributed Predictive Controtéferth called DPC) al
gorithm presented in[4] is extended to the output feedback case byelut simndard Luenbergér
observers for the estimation of the subsystems’ states. It is based onitenatime scheme wit
neighbor-to-neighbor (i.e., partially connected) communication among tisystains where pa
tial (local) structural information are needed, and is deeply inspired tootest state feedba
MPC approach first introduced inl[8] and subsequently extended tautpeitdeedback proble

in [[7].
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Chapter 1
Synopsis

In order to compare the behavior of the different distributed MPC appesadeveloped in the scope
of the HD-MPC Project a real four-tank plant located in the Departmehig#niefa de Sistemas y
Automéatica of the University of Seville that has been used as a real benchysieks

Seven different approaches were tested and compared, includinghtralzed MPC and a de-
centralized MPC. The tested algorithms were the following:

* Centralized MPC for tracking

» Centralized standard MPC for regulation

« Decentralized MPC for tracking

« Distributed MPC based on a cooperative game

« Sensitivity-Driven Distributed Model Predictive Control

» Feasible-cooperation distributed model predictive controller basedwaining game theory
concepts

¢ Serial DMPC scheme

The last four ones are distributed MPC algorithms developed by HD-MRG@tum.

First, some qualitative properties of these controllers are compared. nityeModel Require-
mentsshows whether the controllers need full or partial knowledge of the myated whether the
model used is linear or nonlinear. The en@gntrol Objectiveshows whether the controller is op-
timal from a centralized point of view (i.e., provides the same solution as theatizad MPC for
regulation), guarantees constraint satisfaction if a feasible solution ismedtand whether it can be
designed to guarantee closed-loop stability in a regulation problem.AtliRéiary Software entry
shows which type of additional software is needed by each controlleedfisitributed scheme.

On the other hand, the experimental qualitative results demonstrate howlizedtrsolutions
provide the best performance while the performance of a fully decemtdatiantroller is worse. Dis-
tributed schemes in which the controllers communicate in general improve thisrpance.

The results are summarized in the following table, whi&rés the performance indexk the
transient performance index,evaluated computing the cumulated cost theitrgnsient. The entry
ts shows the cumulated settling times of the three reference changes.
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Qualitative properties Model Control Auxiliary
prop Requirements Objectives Software
Linear system Suboptimal
Centralized Tracking MPC y Constraints QP
Full model -
Stability
Linear system Optimal
Centralized Regulation MPC y Constraints QP
Full model -
Stability

Linear system

Decentralized MPC Suboptimal QP

Local model
Linear system Suboptimal
DMPC Cooperative game Local model Constraints QP
(Full mode) (Stability)
Linear system Optimal
SD-DMPC Local model Constraints | OF
. Linear system Suboptimal
DMPC Bargaining game Local model Constraints NLP
. Linear system Optimal
Serial DMPC Local model Constraints QP

Table 1.1: Table of qualitative properties of each tested controller.

The computational burden is measured on the number and size of the optimizaildams
solved at each sampling time.

Finally, the communicational burden of each controller is measured by the meaver of float-
ing point numbers that have to be transmitted each sampling time by each adehearumber of
communication cycles involved.

In the third chapter, the state feedback Distributed Predictive Contratcéfierth called DPC)
algorithm presented in[4] is extended to the output feedback case bgehaf standard Luenberger
observers for the estimation of the subsystems’ states. It is based oniterative scheme with
neighbor-to-neighbor (i.e., partially connected) communication among tleysteims where partial
(local) structural information are needed, and is deeply inspired to thestraiate feedback MPC
approach first introduced inl[8] and subsequently extended to thetdagaback problem in[7].

The main rationale behind both output-feedback DPC and state-feediBehkso transmit among
the neighbors the future reference trajectories and to interpret theetifie between these trajectories
and the true ones as disturbances to be rejected by a proper robusigtRGd. Joint constraints
between the subsystems could be included, so that a wide range of systesystéms-of-systems)
can be tackled with the present approach. Finally, convergence reanltse established.

An off-line design phase must be carried out in order to apply the DPQitidgo
1) Define a decentralized control law (i.e., the auxiliary control law) whathhe same time, (a) sta-
bilizes the local subsystems when neglecting the interconnections, (b) ®allezoverall large scale
system, (c) has a Lyapunov function which basically corresponds tightee sum of local Lyapunov
functions. The above-mentioned issues can be addressed using ar mfimk#-established results,
worked out in the past in the field of decentralized control. For instantecan rely on milestone
results onconnective stabilityi9], vector Lyapunov functions and the so-called “weighted sum ap-
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Control performance J J ts N # floats | # trans
Centralized Tracking MPC | 28.4 | 28.12 | 3280 | 5 N.D N.D.
Centralized Regulation MPC 25.46 | 23.78 | 2735 | 5 N.D N.D.
Decentralized MPC 39.54 | 21.2 | 1685 |5 0 0
DMPC Cooperative game | 30.71 | 28.19 | 2410 | 5 20 3
SD-DMPC (w/o KF) 35.65 | 23.28 | 2505 | 100 33 10
SD-DMPC (with KF) 28.61 | 28.26 | 1895 | 100 33 10
DMPC Bargaining game 46.32 | 39.52 | 3715 | 5 6 2
Serial DMPC 4459 | 4194 | 3130 | 5 10 [2,7]

Table 1.2: Table of the quantitative benchmark indexes of each testedltamtr

proach” for proving connective stability. More recently, problems (& @) have been successfully
addressed in [3], where a small gain condition for large-scale (nom)isgstems has been derived.

2) Define a decentralized Luenberger observer.

3) Set the stage and final cost functions.
4) Define the proper sets to constrain the state and input trajectories esithgasretic considerations.

5) For each subsysteims= 1, ..., M, define an initial reference state trajectory.

Once the cost functions and the constraining sets are properly defieadinimization problems
to be solved online correspond to low-order MPC problems, defining satadystem’s inputs. Note

that the reference trajectory, for each subsystem, is incrementally diefine
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Chapter 2

Evaluation Results on the Four-tank
System

2.1 The four tank plant and proposed experiment

The four-tank plant is a laboratory plant located in the Department ohirdga de Sistemas y Au-
tomatica of the University of Seville that has been used as a real benchyséeksto test and compare
different HD-MPC approaches developed in the scope of the HD-M®B@®&. A complete descrip-
tion of the plant and the models can be found in Deliverables D4.3.1 and Dxhd.ib [2].

A continuous-time state-space model of the quadruple-tank procesmsyatebe derived from
first principles to result in

dy & ag Ya

G - s 29h1+§ 29h3+§qa, (2.1)
d a

Qe = % agh+ 2 2gh+ B,

Mo~ B gt T Mg,

dhy (1-v)

i - s 2ghy + s

whereh;, Sanda; with i € {1,2,3,4} refer to the level, cross section and the discharge constant of
tanki, respectivelyn; andy; with j € {a,b} denote the flow and the ratio of the three-way valve of
pumpj, respectively ang is the gravitational acceleration.

Seven different approaches were tested and compared, includingttralzed MPC and a de-
centralized MPC. A description of the document can be found in Delilerfab.5.1. The tested
algorithms were the following:

« Centralized MPC for tracking

Centralized standard MPC for regulation

Decentralized MPC for tracking

Distributed MPC based on a cooperative game

Sensitivity-Driven Distributed Model Predictive Control
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» Feasible-cooperation distributed model predictive controller base@dmaining game theory
concepts

¢ Serial DMPC scheme

The last four ones are distributed MPC algorithms developed by HD-MP&@btum. The
description of the algorithm is out of the scope of this deliverable but & diescription of them can
be found in Deliverable D.5.1 and a complete descriptionlin [1]

The four-tank plant is a laboratory plant located in the Department ofnieda de Sistemas
y Automatica of the University of Seville that has been designed to test contrahitras using
industrial instrumentation and control systems. The plant consists of adilydprocess of four
interconnected tanks inspired by the educational quadruple-tankgsrpoaposed by Johansson [6].
A complete description of the plant and the models can be found in DeliverBidl3.1 and D4.4.1
and in [2]

The following experiment is defined in which the control objective is to follogetof reference
changes in the levels of tanks 1 andh2 andh,, by manipulating the inlet flowsg, andq, based on
the measured levels of the four tanks:

» Thefirst set-points are set$p=s, = 0.65 m. These are aimed to steer the plant to the operating
point and guarantee identical initial conditions for each controller. Ore@limt reaches the
operating point the benchmark starts maintaining the operation point foregodds.

« In the first step, the set-points are changeste s, = 0.3 m for 3000 seconds.
e Then, the set-points are changedie= 0.5 m ands, = 0.75 m for 3000 seconds.

¢ Finally, the set-points are changedsio= 0.9 m ands, = 0.75 m for another 3000 seconds. To
perform this change tanks 3 and 4 have to be emptied and filled respectively

The set-point signals are shown in Figlire] 2.1. The control test durat®masirs and 20 minutes.
It is important to remark that the set-points have been chosen in such a atdargie changes in
the different equilibrium points are involved. This is illustrated in Fiduré 2.Bers the region of
admissible sets points is depicted together with the proposed set-points. Natic®iie of them
close to the physical limits of the plant in terms of inputs or level of the tanks 3land

The objective of the benchmark is to design distributed MPC controllers to optitinéz perfor-
mance index

Nsim—1
J= % (ha(i) —s1(1))? + (ha(i) — s2(i))? + 0.01(qla(i) — 6(1))? +0.0L(a (i) — G5(i))?
1=

whereq; andg} are the steady manipulable variables of the plant for the set-miatgls, calculated
from steady conditions of the proposed model of the plant. The testedterghave been designed
using a sampling time of 5 seconds. The performance index measurespgbesesf the plant once
it has been steered to the operation point. Théhcalculated during the time perigd70Q 12000
seconds, that is, for a total 8;y,, = 1860 samples.

2.2 Evaluation results

2.2.1 Evaluation of the controllers

Table[Z.1 shows some qualitative properties of these controllers. The Moulg/ Requirements
shows whether the controllers need full or partial knowledge of the myated whether the model
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Figure 2.1: Set-point signals for the benchmark
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Figure 2.2: Set of admissible set-points.

used is linear or nonlinear. The entBpntrol Objectiveshows whether the controller is optimal from
a centralized point of view (i.e., provides the same solution as the centraliB&lfivt regulation),
guarantees constraint satisfaction if a feasible solution is obtained anteslitecan be designed to
guarantee closed-loop stability in a regulation problem. Abgiliary Softwareentry shows which
type of additional software is needed by each controller of the distribetezhse.

The two centralized controllers are based on a linear model of the full afahtaire included as
a reference for the performance of the distributed MPC schemes. Noté tifia controllers could
communicate without limits, they would be able to obtain the optimal centralized solufiarthe
other hand, the decentralized controller provides a reference oncahdie achieved with no com-
munication among the controllers at all. All the distributed predictive controflessime that each
agent has access only to its local state and model. All the controllers @@ dadinear models.

It is worth noting that the centralized MPC for tracking guarantees clsgaistability not only
for regulation problems, but also for tracking problems with any giveeregice at the cost of opti-
mality. The decentralized controller considered cannot guarantee optingalitgtraint satisfaction,
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Qualitative properties Model Control Auxiliary
prop Requirements Objectives Software
Linear system Suboptimal
Centralized Tracking MPC y Constraints QP
Full model -
Stability
Linear system Optimal
Centralized Regulation MPC y Constraints QP
Full model -
Stability

Linear system

Decentralized MPC Suboptimal QP

Local model
Linear system Suboptimal
DMPC Cooperative game Local model Constraints QP
(Full mode) (Stability)
Linear system Optimal
SD-DMPC Local model Constraints | OF
. Linear system Suboptimal
DMPC Bargaining game Local model Constraints NLP
. Linear system Optimal
Serial DMPC Local model Constraints QP

Table 2.1: Table of qualitative properties of each tested controller.

nor stability. Note that in order to guarantee closed-loop stability, the DMREdan a cooperative
game needs full model knowledge in order to design the optimization probleacbfagent.

The distributed controllers that guarantee optimality (provided sufficiealtiation time) are the
Serial DMPC and the SD-DMPC. Note that these controllers are also tlsendtiea larger commu-
nication and computational burden.

Another key issue in distributed schemes is the class of computational capalfilitteeach con-
troller must have. In particular, for the schemes considered each entruust be able to solve
either QP problems or general nonlinear optimization problems. In the expesintee controllers
used MATLAB's optimization toolbox, in particulajuadpr og andf i ncon.

The properties of each of the proposed controllers are discussestiatied in the previous works
which have been included in the references. Note however, that imaletiese properties may not
hold in the proposed benchmark because the theoretical propertiesasiieme that there are no
modeling errors or disturbances and that a given set of assumptionsteldave carried out all the
experiments with the real plant, so there are modeling errors and disteshadncaddition, although
most of the controllers are defined for regulation, the benchmark is eenefe tracking problem.
Issues such as steady state error and disturbance estimation play atnelkya this benchmark.

2.2.2 Evaluation of the experimental results

The experimental results demonstrate how centralized solutions provideshpdsformance while
the performance of a fully decentralized controller is worse. Distributbdraes in which the con-
trollers communicate in general improve this performance, although theimgreal results also
demonstrate that a distributed MPC scheme is not necessarily better (agcmr@ircertain perfor-
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mance index) than a decentralized scheme and it depends on the formufdkiercontroller and its
design.

Itis also clear how those controllers that incorporate offset-free tgaba (the MPC for tracking,
the MPC for regulation and the SD-DMPC with Kalman Filter) provide a bettdopeance index.
In order to obtain a measure of the performance without the effect ot¢laelys offset, the transient
performance indeX; has been calculated. This index is evaluated computing the cumulated cost
during the transient. The enttyshows the cumulated settling times of the three reference changes.
This shows that those offset-free controllers have a transient pafare index similar to the total
performance index while for the rest of the controllers, the transienkirglbetter. Note that this
index only evaluates the performance during the transient and doekadnta account steady state
errors. It can be seen that the decentralized scheme shows the tsbeitlexy timets and the best
transient performancg, although this controller exhibits the worst overall performahcghis is due
to the fact that the controller reaches a equilibrium point of the controllsgesyquite fast far from
the real set-point.

All the controllers were implemented using a MATLAB function and were naigiesd to opti-
mize the computational time. For this reason, the computation time has not beemtakaccount.
Computation time has been approximately one second for all controllerse Thaegputation times
were lower than the sampling time chosen for each controller and moreosgrcdild be dramati-
cally reduced using an appropriate implementation framework.

Motivated by these issues, the computational burden is best measured pantther and size
of the optimization problems solved at each sampling time. The centralized schelves single
QP problem with Rl optimization variables while the decentralized controller solves 2 QP problems
with N optimization variables. The difference in the computational burden betwese gthemes
grows with the prediction horizon and the number of subsystems. Distribobeares try to find a
trade-off between the burden of computation and communication, and optinTdlgyDMPC based
on a cooperative game and the DMPC based on a bargaining game soles andimber of low
complexity optimization problems. SD-DMPC and Serial DMPC provide optimalityettst of a
higher computational burden.

On the other hand, the communicational burden of each controller is mddsutiee mean num-
ber of floating point numbers that have to be transmitted each sampling time lyageat and the
number of communication cycles involved. It can be seen that iterative D&¢R@mes (SD-DMPC
and Serial DMPC) in general need to transmit a larger amount of informatibite the two con-
trollers based on game theory reach suboptimal cooperative solutions leitleiacommunicational
burden.

The centralized and distributed predictive controllers tested can potengalyith the satisfac-
tion of hard constraints in the inputs and states of the plant. The experimentssigates that all
the controllers deal with the limits of the inputs maintaining the feasibility, stability arebdidoop
performance. However, the constraints on the states are not activgliout the evolution of the
controlled system although there exists states close to the physical limits of tiheTgies proves that
the tested controllers are capable to take into account the constraints indhi@tean of the control
action. Besides, the stability, recursive feasibility and constraint sdiisfigaroperties hold in the real
experiments, where disturbances and model mismatches between the pradmtiel and the plant
are present.
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Control performance J J ts N # floats | # trans
Centralized Tracking MPC | 28.4 | 28.12 | 3280 | 5 N.D N.D.
Centralized Regulation MPC 25.46 | 23.78 | 2735 | 5 N.D N.D.
Decentralized MPC 39.54 | 21.2 | 1685 |5 0 0
DMPC Cooperative game | 30.71 | 28.19 | 2410 | 5 20 3
SD-DMPC (w/o KF) 35.65 | 23.28 | 2505 | 100 33 10
SD-DMPC (with KF) 28.61 | 28.26 | 1895 | 100 33 10
DMPC Bargaining game 46.32 | 39.52 | 3715 | 5 6 2
Serial DMPC 4459 | 4194 | 3130 | 5 10 [2,7]

Table 2.2: Table of the quantitative benchmark indexes of each testedltamtr

2.3 Conclusions

In this chapter, the results of the HD-MPC four-tank benchmark have pessented. In this bench-
mark, different MPC controllers were applied to the four-tank procéastpThese controllers were
based on different models and assumptions and provide a broad viewvdifférent distributed MPC
schemes developed within the HD-MPC project. The results obtained shewdistributed strate-
gies can improve the results obtained by decentralized strategies usingofmeatibn shared by the

controllers.

Page 1227




HD-MPC ICT-223854 Evaluation results, impact on economicsand 0perabi|ity|

Chapter 3

An Output Feedback Distributed
Predictive Control Algorithm

3.1 Introduction

In this chapter, the state feedback DPC algorithm presentéd in [4] is edeadhe output feedback
case by the use of standard Luenberger observers for the estimatiom siibsystems’ states. It is
proven that, under standard assumptions in MPC, the closed-loop sysji@ya stability properties,
in the sense that the subsystems’ state trajectories starting from given $etstate space converge
to the origin. This result is achieved by considering the state estimation eradugber disturbance
to be rejected by the control system. Notably, the same considerations p/étothe chapter in
order to obtain the convergence results can be used to show the rasustriee proposed approach
also with respect to exogenous unknown (but bounded) disturbances

The chapter is organized as follows. In Secfiod 3.2 the partitioned systermaduned, while the
output feedback DPC algorithm is defined in Secfioh 3.3. The main comeggesults are presented
in Section[3.4. Sectiop_3.5 illustrates a simulation example, and some conclustodsaamn in
Sectior 3.). For clarity of presentation, all the proofs are postponed fyphendix.

Notation. We say that a matrix is Schur if all its eigenvalues lie in the interior of the unit civieuse
the short-hand = (v1,...,Vs) to denote a column vector with(not necessarily scalar) components
Vi, ..., Vs. The symbokb denotes the Minkowski sum, namély= A® B if and only ifC= {c:c=
a+b, forallac A be B}. We also denot@{\ilAi =A1®---@Au. For adiscrete-time signal and
a,beN,a<b, we denotgs,, Sat1;- - -,S) With S A continuous functioror : R — R is a7,
function iff a(0) = 0, it is strictly increasing and (s) — +o ass— +co. Finally, Am(-) andAm(-)
denote the maximum and the minimum eigenvalue of a matrix, respectively.

3.2 Partitioned systems

Consider a large-scale system, which obeys to the linear dynamics

Xt+1 = AXxt + Bug

Vi — Cx (3.1)

wherex; € R" is the state vector, and € R™ andy; € RP are the input variable and the output
variable, respectively.
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Let the systeni(3]1) be partitionedlihlow order interconnected non overlapping subsystems, where
a generic submodel hag € R" as state vector, i.e; = (xtm, ,x{[w) andyM; n = n. According to
this decomposition, the state transition matridgsc R™*™ ..., Aym € R™*™ of theM subsystems
are diagonal blocks of\, whereas the non-diagonal blocks Af(i.e., Aij, with i # ]) define the
dynamic coupling between subsystems. Namely, we say that subsysseadynamic neighboof
subsysteni if and only if Aj; # 0, i.e. the state of affects the dynamics of subsystenrhe set of
dynamic neighbors of subsystarfwhich excludes) is denoted 4.
Furthermore, we assume that the inpuand the outpuy; can be partitioned intM input and output
vectorsu{i] eRM andyt[iJ € RP respectively, with=1,...,M. We assume tha*m directly affects only
the state of the-th subsystenxtm andytm only depends orxtm, foralli=1,...,M. This implies that
B andC have a block diagonal structuBe=diag(B, ...,Bu) andC =diag(C;,...,Cu), respectively,
whereB; € R"*™M andC; € RP*" for all i = 1,...,M. It finally results that thé-th subprocess obeys
to the linear dynamics _ _ ‘ _

1 o= A B+ T e A

[iT _ ¢ xtm (3.2)

where we assume that the local states and the local inputs are const'rmnergj], € Xj CR" and
ut['] € Uy CR™, and that the sef&; andU; are convex neighborhoods of the origin. Furthermore we
defineX = |‘|{"':1Xi CR"andU = r]i'v'zltUi, which are convex by convexity &f; andUj, respectively,
fori=1,...,M.

We also introduce the collective state constraints, involving more than osgstain’s state

wheres=1,...,n.. We say thatls is a constraint on subsystenif x! is an argument oHs. We
denote by% = {s€ {1,...,n.}: Hsis a constraint on} the set of constraints on subsystem\e
say that subsysterjis aconstraint neighboof subsysteni if there existss € % such thaill! is an
argument oHg, and we let7% denote the set of the constraint neighbors of subsystdtimally we
define, for alls € 4}, a functionhs(x), x) = Hs(x), wherexl], thei-th vector component of, is not an
argument oHs(a, ). WhenX = R", U = R™ andn; = 0 we say that the system is unconstrained.

The dynamic coupling terms and the coupled constraints induce an intectednetwork of
subsystems, which can be described by means of a directed grapfi¥’,.#), where the nodes in
¥ are the subsystems and the edge) in the sets C ¥ x ¥ models that the state gfaffects the
dynamics of subsysteinor | is a constraint neighbor of More formally, (j,i) € .# if and only if
j € MUA.

3.3 The output feedback DPC algorithm

Our aim is to design, for each subsysteman algorithm for computing an input sequem@ebased on

the outputytm and some information which is transmitted by its neighbdfs) 77, which guarantees
closed loop asymptotic convergence to the origin of the state of the largesgstden[(3.11), the mini-
mization of a given local cost function and constraint satisfaction. G8&t), for a given subsystem

i we define a local Luenberger observer, which provides an estuﬂamétﬁe stateq'] based on the
local measuremevy{'] and the state estimates providediiki neighbors, i. extm' j € A4j. Namely

Xa=AiR +Bu+ 3 A L' -Cx) (33)
jen
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Assuming that the decentralized estimafar](3.3) enjoys the stability propertieifiap in the follow-
ing, given the system state initial conditioxgand the observer initial conditioxg = ()#01], . ,X%M]),
we require that there exist, for al=1,...,M, setsZ; C R" such thaio; = x; —x; € £ = |‘|iM:12i for
all't > 0. This amounts to say thaf” = x[m —i[m cZiforallt>0,foralli=1,...,M.

Furthermore we set, for each subsystem, a reference trajeﬂowhﬁ:h is transmitted to the
subsystems which haveas neighbor. We also assume that one can guarantee that, tfor @llthe
local state estlmaue{ “lies in a specified time-invariant nelghborhoodxyfl e, xt xt['] € &, where
0 € 4. Note that thls in turn, implies that the real state varlad([illes also guaranteed to lie in a given
neighborhood ok”, i.e,x — % € § @5 foralli =1,...,M.

Lettingw]| = e Aj & — g — Ly — Gx'), thei-th observer equatiofi{.3) can be written as
follows

)thJ]rl = Au +B|Ut +2]€JVA|J)(t +Wt] (3-4)

where the termvt[ € Wi=@jc. A} @ (—LiCi)Z represents a bounded disturbance affecting equa-
tion (3.4) andz,e/A.,x[ can be considered as a known input. Provided that, for=all, ..., M, the

constramqu X[H € & is satisfied for alt > 0, we cast the problem of designing an output-feedback
distributed controller for the real system as the problem of designingustshate-feedback control
law for the subsysteni (3.4), foral=1,....M
For the statement of the local MPC sub-problems (i-:©PC problems) we rely on the robust MPC
algorithm presented in [8] for constrained linear systems with boundedrulistces, and extended
to the output feedback case A [7]. Although this approach requires @ coonplex off-line design
phase with respect to robust MPC methods based on the solution of min-wlalems, the opti-
mization problems to be solved on-line are of the same order magnitude thanetheegpuired for
non-robust methods.

We define the-th subsystem nominal model associated to equdiioh (3.4)

R = AR B 43 AR (3.5)

The control law, both for the reaith subsysten{ (312) and for the equatibn(3.4) will be assigned, for
all't > 0, according to

! = a4 ko ! — gl (3.6)
whereK@"is a suitable control gain. Lettinzﬂ} = );tfi] — Rt“] from (3.4) and[(3.6) we obtain
Zt[i-]&-l = (A +BKAZ +wg (3.7)

wherewtm € W;. SinceW; is bounded, if A + Bi_ K2w) is Schl_Jr, then there exists a robust positively
invariant (RPI) se; for (3.7) such that, for altt['] €7z, thenz[['J]rl € Z;. From [37) it follows that, if
U is computed as i (3.6) for ai> t, then

% -2 ez (3.8)

implies that’ — 8! € Z; for all k > .
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Now write )ZP] )?tH ()ZtM x[”) (xtm >~<t”) and define the se; for alli=1,...,M as a set
containing the origin and satisfyirtg & Z; C &. Since, in view ofIZBZB)xLH'— 2,[('} € Z forall k > t, if
we also satisfy the constraint

sl e g (3.9)

forallk >t, thenxLH —XE] € & for all k >t as required.
We are now in the position to state the local minimization problem for all subsystemstantt.

Given the future reference trajectoried afnd its neighborzl[ﬁ, k=t,....,t +N—-1, ] e SUIFU{i},
thei-DPC problem consists in the following

. N/~ ~
olil [’HII’] V' ( ! UR]HN 1]) (3.10)

XUt

subject to the dynamic and static constraihts|(3[5)] (3.3, (8.6), (B.8), {8.®e local state and input
constraints

le X (3.11)
el (3.12)

% A

ﬂ[k
whereX; ®Z ¢ %; C X; andU; & KXz C U; and to the regional state constraints
AR %0 <0 (3.13)

fork=t,...,t+N—1,forallse %,Wherethefunctioﬁg] is defined in such awaythﬁg] )2L' Xk) <

guarantees thatts(xl[(i],xf;) < 0 for all XE] € >”<,[(' ®Z @ % andx; € Xk ® |‘|i'\":1<5? @ Z. Furthermore, the
nominal state trajectory must satisfy the following terminal constraint

R e XF (3.14)

where§<§iF is thei-th nominal subsystem terminal set, whose properties will be specified inltbe/{
ing.

The cost functiotVN (%", OEHN,H) is

. t+N—-1 .
WM o) = 3 R0 U (R (3.15)

wherel; : R" x R™ — R, is the stage cost ang™ : R" — R, is the final cost. From now on, we
assume thdt is defined in such a way thit0,0) = 0 and that there exists, for al=1,...,M, a. %
functiona and a matrixR; satisfying rank[B! RT]T) = m such that; (%!, dll) > a (||(% i R.u '])||) for

all £l e R™, dlil e R™. Note that this assumption can always be fulfilled by a proper choice of the
weightR; in the stage cost.

As in [8], in the stated problem minimization is performed with respect both to thenad system
initial statexf] and to the nominal input trajecto t]t+N 1 Letting the palrxt/t, tt+N e be the
solutlon to the-DPC problem[(3.0) at timg we set the input to the nominal syst-3 5), at ttme

asut/t. According to[(3.6), the input to the real systdm[3.2), at indtaist

_ G'P/]t i KiaUX()ztm _ 5{{['}0 (3.16)
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Furthermore, let us define a‘gt “the trajectory stemming fromf] andu[t}tJrN e in view of equation
(83). The value of the reference state varlatﬂle\l is set to
il il (3.17)
XN = KNt :

We stress that we do not define, at each indtaahew reference trajectoxi}] Tk=t+1...,t+N, but
we append the valwé'rN to the reference trajectory which has been already defindd<dr+ N — 1.

3.4 Convergence results

The following definitions and assumptions are needed to state the main rethdtabfapter. The sets

of admissible initial condition%g, Xo, andxifo}N L forall j=1...,M are defined as follows.

Definition 1 Lettingx = (xX,...,xM]), we denote the feasibility regias for all the i-DPC prob-
lems as the set '
XNi= {x: ifxll =xi foralli=1,...,M

oMl o1 5M
thenﬂxo,( {O]N IR {ON 1) (Xg/]o, ,xg/(])),

(NI ,u{g@N_n) such thai@2), @8), B3)
(BI11)(3.13)are satisfied forall i=1,...,M}

We denote, for eachc XN, the region of feasible initial state estimates. Letting (x%, ..., x™M))

XN = (X ifxll =x andx{/ =X foralli =1,...,M
oM ol1 M|
th(fnﬂ( %O]N 1lM [02\1 1) (Xé/]oa ,Xg/o)
(o1 u[o:k_l]) such that@2), (3.8), G3),
(BI1)(3.13)are satisfied forall i=1,...,M}
Also, giverx € XN andx € S@‘, the region of feasible initial reference trajectories is
~ i ~[1 ~[M L. H . H
Xz = {(XHNA}, . ..,X{O:}\lfl]) - if xg] =X andig] =
. o1 oM
foralli=1,....M thenﬂ(xg/]o,...,xg/c])),

(g g2+ Ogy_g)) such thai@2), @8), @9)
(311)(@E13)are satisfied forall i=1,...,M}

Assumption 1 LettingL =diag(L1,...,Lm), the matrixA 4+ LC is Schur. Furthermore, there exist,
foralli =1,...,M, setsZ; C R" such thatZ is a positively invariant set for the system,; =

Assumption 2 The matrix A + B;K2"¥is Schur, for alli=1,...,M.

Assumption 3 LettingK 2 =diag(K2"% ..., K&, X = M, X;, U = M, U; andXF = M, XF, it
holds that:

(i) The matrixA +BK?2&%is Schur;
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(i) R (%) <Ooforall ke XF, forallse %, foralli = 1,...,M, whereHil! is defined in such a way
that Hil' () = Al (=1, R) for all s € &, for all i = 1,..., M.

(i) XF C Xis an invariant set fok* = (A +BKaX)&;
(iv) 0 =K2% e U for anyx € XF;
(v) forallx € XF and, for a given constamk > 0
VF (87) = VF (R) < —(1+K)I(%,0) (3.18)

where VF(R) = ML VF and

1(%,0) = TM, 1R, all).

Assumption 4 Given the setg; and the RPI sets;Zor equations(3.7), there exists a real positive
constantog > 0 such that Z& %5 (0) C & for all i = 1,...,M, where%;.(0) is a ball of radius
Pe > 0 centered at the origin.

Proper ways to select the design parameters fulfilling Assumgiidhs 2-4saesded in the pa-
per [B], where arguments similar to the ones introducedlin [9] @nd [3]rapayed.
Now we are in the position to state the main result.

Theorem 1 Let AssumptiongSI[I}4 be satisfied and letE a neighborhood of the origin satisfying
Ei®Z C &. Then, for any initial reference trajectory NQ‘OXO, the trajectoryx;, starting from any
initial conditionxg € XN, g € X)’}‘O, asymptotically converges to the origin.

3.5 Example

Consider the example illustrated in Figlrel3.1 consisting in four trucks with magse 3, mp = 2,
mg = 3, my = 6, each endowed with an individual engine (exerting the forceut[iOO: 1,...,4).
Trucks 1 and 2 (respectively 3 and 4) are dynamically coupled throsghirg and a damper, whose
coefficients ardi» = 0.5 andhy, = 0.2 (k34 = 1 andhz4 = 0.3), respectively. The components of the

A\

Figure 3.1:lllustration of the example.

2-dimensional state vectap of thei-th truck represent the displacement @fith respect to a given
equilibrium position (i.e.xﬂ]’l) and the absolute velocity of the truck. Foria# 1,...,4, positions
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are measured, i.eym = x,[(”’l. The following constraints are set to the input signalléﬂ < 0.5 for
i=1..3 and|u|[(4}| < 1. The model is discretized with sampling intenra&= 0.1 s. We set the
observer’s initial conditions tmg]_: [5,0]" and the real system initial conditions are randomly gen-

erated in such a way thag] —ig] € Zj, whereZ;, satisfying Assumptiohl1L{ are defined by pole
assignment, where the poles of the local systems .&rar@d 06 for all i), are shown in Figurie 3.2.

Figure 3.2:Setss;, i=1,..., 4.

We define the decentralized control law by pole assignment (the poleslottiesystems are.b
and 06 for all ).

We properly define quadratic weighting functions and we set&ef andE; as in Figurd 3.3 (for
details se€]5]).

The initial position reference trajectories are exponential, starting fronmiti@ conditions, with
decaying rate @6. The velocity reference trajectories are computed coherently with tsidgoo
reference trajectories, aml= 30. In Fig[3.4 the plots of the optimal input trajectories obtained with
DPC are shown, and in Fig._3.5 we show the obtained optimal trajectories sttiee

3.6 Proof of Theoren1

3.6.1 The collective problem

Define the collective vectors R - &, M,

Xt = ()?{1],...,7({“\"]), Oy = (01[1],...,01[M]),wt = (wt[l],...,wt[M]) andz = (zt[l},...,zt[M]). Furthermore, de-
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Figure 3.3:Sets4, Zi, E,i=1,...,4.
fine the matrices

A* =diag(A11,...,Aum), A = A— A*. Collectively, we write equation5(3.3].(8.4), ahd{3.5) as

Xt+1 = Ax +Buy — L (yt — Cx;) (3.19)
)?tJrl = A*X; + Buy —l—AS‘(t -+ Wt (320)
)A(tJrl = A*% + B0 —l—AS‘(t (321)
In view of (3.8)
Uy = O + K@%(x; — %) (3.22)

and we collectively write[(3]7) as
Zt11 = (A* + BKaux)Zt -+ Wt (3.23)

Since each-DPC problem depends upon local variables (the coupling tenﬂlnaré fixed fork =
t,...,t++N—1), minimizing [3.10) for ali = 1,...,M is equivalent to minimize

VN ()= min VN(&, O in-1) (3.24)

Xt Ult:t+N-1]

subject to the dynamic constrainis (3.2[), (8.19), (3.22), the static ciomistra

M
Xt—%Xt €Z=1[1Z (3.25a)
il
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Figure 3.4:Input trajectories. Leftut[i] (solid line), thresholds fout“] (dotted lines). Right:ut[q (solid line),
thresholds forut['“/]t (dotted lines).

M
Xk— Xk e E= rlEi (3.25b)
=
% e X (3.25¢)
el (3.25d)
H (X, Xk) <0 (3.25€)

fork=t,...,t+N—1, and the terminal constraint
%N € XF (3.26)

In (3.25),H collects all the constraints (3113) and note that(ibyin Assumptio BH(X,%) < 0 for
all x € XF. The collective cost functiol’N is defined as

t+N-—-1
VN (&, O n-1) = > (R, O) + VT (Re i)
k=t
We also define
VNO(%) = min VN(%, Ojne ) (3.27)
Ultt+N—-1]

subject to the dynamic constrainfs (3.21) and the static constrfainisl(3228)-(
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Figure 3.5:Controlled state variables with DPC (solid lines) first mrmofx}m (dotted lines) and oft['}t (dashed
lines).

3.6.2 Feasibility
From Definitior1, it collectively holds that

XN = {X if Xo=X thena)?o,)’z[o:N_l],f(o/o, G[O.N—l]
such that[(3.21)[(3.25) and (3]126) are satisfied

For each point of the feasibility satc XN

XN:= {Xo: if xo =x andXo = X then3Ko.n_1], Xo/0, OjoN-—1

X
such that[(3.21)[(3.25) and (3]126) are satisfied
Finally, if x € XN, X e XN

XN— = {)h(’[o:N_l] D if Xg =X and)?o = fthenaio/o, O[O,N—l]

X,X
such that[(3.21)[(3.25) and (3]26) are satisfied

Assume that, at instart x; € XN, X € X¥, and thatky,.y_1 € X} 7. The optimal nominal
input and state sequences obtained by minimizing the collective MPC probiefy.ary 1, =
{0/t Oreno1e ) @ndXeeeny e = {Kepts - - Xeonge ) respectively. Finally, recall that it is skt n =
Xe Nyt )

Denotely it = K¥ RN andKenran = A" Reonge + Blinge +AReen. SinceXein = Xents
the latter is equivalent & N1/ = (A +BK3) X\t

Page 22727




HD-MPC ICT-223854 Evaluation results, impact on economicsand 0perabi|ity|

Note that, in view of constrainf (3.26) and Assumpliorig.y ; € U andX ny1/t € XF. There-

fore, they satisfy constraintg_(3.25d), (3.P5d) adnd (3.26). Also, rdavg to Assumptioi]3,[(3.18)
holds.

We also define the input sequence

Opgaany e = {01/t -+ Oen—1/t, Orn gt )

and the state sequence stemming from the initial condRiyy, and the input sequencg 11, n)t
i.e.,
)A<[t+1.t+N+1]/t - {)A(t+1/t7 e ,>A(t+N/ta)A(t+N+1/t}
Notice thatx, — X € Z forallk=t,...,t + N — 1 from Assumptiofi]l, and that, in view &f (3.25a)-

@Z5D),wk € 1M, W forallk =t,...,t + N — 1. In view of the feasibility of thé-DPC problem at
timet, we have thak; 1 — X1 € Z andXy; — Xk € MY,Eforallk=t+1,...,t +N—1. Note also

thatX N — X n = 0 € E by (3.17). Furthermore, sinég,n = X n/t andXe N € XF, from (3.26) it
holds thatH (>A<t+N/t,>“<t+N) < 0 from (ii) of AssumptioriB. Therefore, we can conclude that the state
and the input sequenc®g, 11 n1)t andUp, 11N are feasible at+ 1, since constraint§ (3.25) and
(3.26) are satisfied. This proves thate XN, x; € XN L andXn_1 € th implies thatx,, 1 € XN,

X € XN andXy114n] € XN

Xt+1 Xt 1, X1

3.6.3 Convergence of the optimal cost function
By optimality,VN*O(f(t+1/t) < VN()A(t+1/ta Ut y114n)t), Where
t+N
VN R0 Ot ) = > | (Rt Gipt) +VE (Reensann) (3.28)
k=t+1
Therefore we compute that
VNO(Re10) = VN (Re) < =1(ejts Oege) 1Ryt Oeen o)+
+VF (XI+N+1/t)_V (Xt+N/t) (3.29)

In view of (3.18)
VE (Reansan) =V Reongt) H1einge Orange) <
—KI(Xen ey Oegnt)

and so, from[(3.29), it follows that

VMO 1) < VNO(Re ) = 1Kot O je) — KE (Kot Onige) (3.30)

Recall the definition of; and of matrixR;, for alli = 1,...,M, and defineR =diag(Ry,...,Ru).
Then, there exists &, function a, such that(x,0) > a (||(X,R0)||) for all X € R", 0 € R™. This
implies thatl (X, 0) > a (||X]|) for all X € R", 0 € R™. Therefore

VN’O()A(t+1/t) < VN"O()A(t/t) —aL([[Xexll) — kaL([IXenl) (3.31)

for all feasible sequencég, k=t,...,t+N—1.
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Now we analyze the properties of the cost functitVi (x;) defined in[[3.24). First, note that, by
definition of%; ;, we have tha¥N*(x;) = VN9(%, ;). By optimality, we have that

VN*(itJrl) = VN’0(2t+1/t+1> < VN’O(f(tJrl/t)

Considering[(3.31), we obtain that

VI (%e1) < VNV (%) — o ([Reel]) — ka (%) (3.32)

for all X; € S@{, beingx; € XN, and for all sequenceg n_1) € )?)’}{Z This proves thafi% || — 0
and|/X;|| — O ast — +oco.

3.6.4 Convergence of the trajectories

Let & be a positive real number such that||#|| < o, ||Xk|| < O, k=t,....t + N and|0x|| < o,
k=t,...,t + N— 1, then constraint$ (3.2bH)-(3]26) are satisfied.
Define a sequenocg ,, k=t,...,t+N, stemming from the initial conditiom;‘/t = %1, whose dynam-
ics obeys to[(3.21), and where the inpufiis= Uk = Ka“"xﬁ/t, forallk=t,...,t +N—1. Then there
exists a positive real numbég < & such that, if[%; 1|| < &and|[X|| < & fork=t,...,t+N—1, then
Xl <O k=t,....t+N, and|u || < &, k=t,....,t + N—1. Infact, denotind= = A" +- BK*",
from (3.21), fori > 1

X = F'Rep+ Z)FJA)N(H—i—j—l (3.33)

J:

and|[x; [l = [Reell < 8 < O, [1%7 3l < M-y, IF + 36 FIA(| & and g , | < K]]I
Therefore, for a suitabléy, if [[X || < & and||X|| < &, k=t,...,t+N—1, then the trajectories
Xi k=t,...,t +N andu;;/t, k=t,...,t +N—1 are feasible (since alsg, satisfies[(3.25a) for the
feasibility of thei-DPC problem at time).

Since||%; || — 0 and||% || — 0 ast — +o, there exist$ > 0 such that|%; ;|| < & and||%|| < &
forallt > E which makes the tra_Ljectorie:;/t, k=t,...,t +N, andu;/t, k=t,...,t + N—-1, feasible
for allt > t. By optimality, ift >t

t+N-1
VN () = VNOR ) < S Ik U ) + VF (x;;N /t) (3.34)
k=t

Recall [3.18). Sinc&™ > 0 by definition, one has thaltx; . Uy ) < 71 V* (xﬁ/t) <VF <x’|;/t) and,
from (3.34)

_ t+N
V(%) < 3 VF (xf;/t> (3.35)
k=t

From [3.33) and(3.35), we obtain that, for@lb t, there exists a#,, function8 such that

VN (%) < Bl (Rejts Kieren—1)1) (3.36)

For this it follows thatvVN*(x;) — 0 ast — oo,
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Recall thatx, ; is generated according o (3121), stemming from the optimal initial conditign
and inputsliy ;. One can write the solution tb (3121) &S 1 = Vi + %iUt, where

Vit = (A*)Ixt/t + %(A*)JAXtJri—j—l,
J:

% =[A")"1B ... B 0 ... 0

ifi=1,...;N, U= (O, ..., 0yn—1/)- Note that, sincek; ;|| — O and|[%|| — O ast — +oo, also
[Virell — O ast — +oo forallk=t+1,...,t+N. We also denotg; ; = X;; and %o = Onxnm-
Now, consider again the functionN* (x,):

tAN-1
VG0 = 5 1(Vige + BVt Gige) + V5 (Veange + Bl (3.37)
=

From the definition of; it follows thatl(Xk, Gx) > ai (]|(Xk, R0k)||), and so

0 Sk Hau (| (Vin + Zials, Ri) )
FVF (Ve + BuUn) < VIV ()

Since it is proved that™N*(x;) — 0 ast — oo, it follows that, for allk =t,...,t +N—1
oL ([l (Ve + Zi-tUr, Rlg) ) — 0
andVF (Vin it +ZnUp) — 0 ast — +o. This implies that:
BU; + Vi — 0 (3.38)

ast — o, where

b= [diag(Ff..,R)] B=1B e A

andVi = (W, -, Vianses 0, -+, 0). Itis readily seen that, in view of the triangular structurezbiind
since, by definition oR;,i =1,...,M, rank([BT RT]T) = mthen rankB) = Nm SinceV; — 0 as
t — oo, from (3.38) it follows that; — 0 ast — +oo. Thereforel;; — 0 ast — .

Finally, recall that the statg and its estimat&; evolve according to the equations

{ X1 = AXi+B [0t + KAy — %) B
Rt = A%B G+ K% —f)] —LC(x X

Recalling thato; = x; — X, the dynamics of oy, x;) is given by

o1 = (A+LC)oy
Xy1 = (A—FBKaUX))?t—LCO't-i—B(Gt/t—Kauxf(t/t)

By asymptotic convergence to zero of the nominal state and input signeaasdd, , respectively,
we obtain that

B (0i s —K®% ) is an asymptotically vanishing term. Sin¢a +BK?2") and (A+LC) are
Schur by Assumptiof]3 arid 1, we obtain tiat— 0 andx; — 0 ast — +oo, from which it follows
thatx; = X; + 0y — 0 ast — +oo.
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3.7 Conclusions

The output feedback distributed predictive control algorithm presénttdds chapter has many fea-
tures which make it suited for practical applications, such as the limited mutoall&dge and ex-
change of information among neighbors, the possibility to handle local ahalgdtate and control
constraints, and guaranteed convergence properties.

However, a number of significant developments are required to complefgbitehe potentialities of
the approach in many significant practical cases. Among them, the soluttoatoficking problem for
constant reference signals and the possibility to include in the problem fatiorujoint (cooperative)
goals for the subsystems will be considered in the near future.
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