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Executive Summary

The deliverable starts with a synopsis chapter. The second chapter of this deliverable then de-
scribes the evaluation results on a real four-tank system. Seven different approaches were tested
and compared, including two centralized MPC, a decentralized MPC and four distributed MPC ap-
proaches developed by the HD-MPC Consortium. Some qualitative properties of these controllers
are compared and also experimental qualitative results are also shown.
In the third chapter, the state feedback Distributed Predictive Control (henceforth called DPC) al-
gorithm presented in [4] is extended to the output feedback case by the use of standard Luenberger
observers for the estimation of the subsystems’ states. It is based on a noniterative scheme with
neighbor-to-neighbor (i.e., partially connected) communication among the subsystems where par-
tial (local) structural information are needed, and is deeply inspired to the robust state feedback
MPC approach first introduced in [8] and subsequently extended to the output feedback problem
in [7].
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Chapter 1

Synopsis

In order to compare the behavior of the different distributed MPC approaches developed in the scope
of the HD-MPC Project a real four-tank plant located in the Department ofIngenieŕıa de Sistemas y
Automática of the University of Seville that has been used as a real benchmark system.

Seven different approaches were tested and compared, including two centralized MPC and a de-
centralized MPC. The tested algorithms were the following:

• Centralized MPC for tracking

• Centralized standard MPC for regulation

• Decentralized MPC for tracking

• Distributed MPC based on a cooperative game

• Sensitivity-Driven Distributed Model Predictive Control

• Feasible-cooperation distributed model predictive controller based on bargaining game theory
concepts

• Serial DMPC scheme

The last four ones are distributed MPC algorithms developed by HD-MPC Consortium.
First, some qualitative properties of these controllers are compared. The entry Model Require-

mentsshows whether the controllers need full or partial knowledge of the system and whether the
model used is linear or nonlinear. The entryControl Objectivesshows whether the controller is op-
timal from a centralized point of view (i.e., provides the same solution as the centralized MPC for
regulation), guarantees constraint satisfaction if a feasible solution is obtained and whether it can be
designed to guarantee closed-loop stability in a regulation problem. TheAuxiliary Softwareentry
shows which type of additional software is needed by each controller of the distributed scheme.

On the other hand, the experimental qualitative results demonstrate how centralized solutions
provide the best performance while the performance of a fully decentralized controller is worse. Dis-
tributed schemes in which the controllers communicate in general improve this performance.

The results are summarized in the following table, whereJt is the performance index,Jt the
transient performance index,evaluated computing the cumulated cost duringthe transient. The entry
ts shows the cumulated settling times of the three reference changes.
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Qualitative properties
Model
Requirements

Control
Objectives

Auxiliary
Software

Centralized Tracking MPC
Linear system
Full model

Suboptimal
Constraints
Stability

QP

Centralized Regulation MPC
Linear system
Full model

Optimal
Constraints
Stability

QP

Decentralized MPC
Linear system
Local model

Suboptimal QP

DMPC Cooperative game
Linear system
Local model
(Full model)

Suboptimal
Constraints
(Stability)

QP

SD-DMPC
Linear system
Local model

Optimal
Constraints

QP

DMPC Bargaining game
Linear system
Local model

Suboptimal
Constraints

NLP

Serial DMPC
Linear system
Local model

Optimal
Constraints

QP

Table 1.1: Table of qualitative properties of each tested controller.

The computational burden is measured on the number and size of the optimizationproblems
solved at each sampling time.

Finally, the communicational burden of each controller is measured by the meannumber of float-
ing point numbers that have to be transmitted each sampling time by each agent and the number of
communication cycles involved.

In the third chapter, the state feedback Distributed Predictive Control (henceforth called DPC)
algorithm presented in [4] is extended to the output feedback case by the use of standard Luenberger
observers for the estimation of the subsystems’ states. It is based on a noniterative scheme with
neighbor-to-neighbor (i.e., partially connected) communication among the subsystems where partial
(local) structural information are needed, and is deeply inspired to the robust state feedback MPC
approach first introduced in [8] and subsequently extended to the output feedback problem in [7].
The main rationale behind both output-feedback DPC and state-feedback DPC is to transmit among
the neighbors the future reference trajectories and to interpret the difference between these trajectories
and the true ones as disturbances to be rejected by a proper robust MPCmethod. Joint constraints
between the subsystems could be included, so that a wide range of systems (or systems-of-systems)
can be tackled with the present approach. Finally, convergence resultscan be established.

An off-line design phase must be carried out in order to apply the DPC algorithm:
1) Define a decentralized control law (i.e., the auxiliary control law) which,at the same time, (a) sta-
bilizes the local subsystems when neglecting the interconnections, (b) stabilizes the overall large scale
system, (c) has a Lyapunov function which basically corresponds to a weighted sum of local Lyapunov
functions. The above-mentioned issues can be addressed using a number of well-established results,
worked out in the past in the field of decentralized control. For instance, one can rely on milestone
results onconnective stability[9], vector Lyapunov functions and the so-called “weighted sum ap-
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Control performance J Jt ts N # floats # trans
Centralized Tracking MPC 28.4 28.12 3280 5 N.D N.D.
Centralized Regulation MPC 25.46 23.78 2735 5 N.D N.D.
Decentralized MPC 39.54 21.2 1685 5 0 0
DMPC Cooperative game 30.71 28.19 2410 5 20 3
SD-DMPC (w/o KF) 35.65 23.28 2505 100 33 10
SD-DMPC (with KF) 28.61 28.26 1895 100 33 10
DMPC Bargaining game 46.32 39.52 3715 5 6 2
Serial DMPC 44.59 41.94 3130 5 10 [2,7]

Table 1.2: Table of the quantitative benchmark indexes of each tested controller

proach” for proving connective stability. More recently, problems (a) and (b) have been successfully
addressed in [3], where a small gain condition for large-scale (nonlinear) systems has been derived.
2) Define a decentralized Luenberger observer.
3) Set the stage and final cost functions.
4) Define the proper sets to constrain the state and input trajectories using set-theoretic considerations.
5) For each subsystemi = 1, . . . ,M, define an initial reference state trajectory.

Once the cost functions and the constraining sets are properly defined,the minimization problems
to be solved online correspond to low-order MPC problems, defining localsubsystem’s inputs. Note
that the reference trajectory, for each subsystem, is incrementally defined.
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Chapter 2

Evaluation Results on the Four-tank
System

2.1 The four tank plant and proposed experiment

The four-tank plant is a laboratory plant located in the Department of Ingenieŕıa de Sistemas y Au-
tomática of the University of Seville that has been used as a real benchmark system to test and compare
different HD-MPC approaches developed in the scope of the HD-MPC Project. A complete descrip-
tion of the plant and the models can be found in Deliverables D4.3.1 and D4.4.1and in [2].

A continuous-time state-space model of the quadruple-tank process system can be derived from
first principles to result in

dh1

dt
= −

a1

S

√

2gh1+
a3

S

√

2gh3+
γa

S
qa, (2.1)

dh2

dt
= −

a2

S

√

2gh2+
a4

S

√

2gh4+
γb

S
qb,

dh3

dt
= −

a3

S

√

2gh3+
(1− γb)

S
qb,

dh4

dt
= −

a4

S

√

2gh4+
(1− γa)

S
qa,

wherehi , Sandai with i ∈ {1,2,3,4} refer to the level, cross section and the discharge constant of
tank i, respectively;q j andγ j with j ∈ {a,b} denote the flow and the ratio of the three-way valve of
pump j, respectively andg is the gravitational acceleration.

Seven different approaches were tested and compared, including two centralized MPC and a de-
centralized MPC. A description of the document can be found in Deliverable D6.5.1. The tested
algorithms were the following:

• Centralized MPC for tracking

• Centralized standard MPC for regulation

• Decentralized MPC for tracking

• Distributed MPC based on a cooperative game

• Sensitivity-Driven Distributed Model Predictive Control
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• Feasible-cooperation distributed model predictive controller based on bargaining game theory
concepts

• Serial DMPC scheme

The last four ones are distributed MPC algorithms developed by HD-MPC Consortium. The
description of the algorithm is out of the scope of this deliverable but a short description of them can
be found in Deliverable D.5.1 and a complete description in [1]

The four-tank plant is a laboratory plant located in the Department of Ingenieŕıa de Sistemas
y Automática of the University of Seville that has been designed to test control techniques using
industrial instrumentation and control systems. The plant consists of a hydraulic process of four
interconnected tanks inspired by the educational quadruple-tank process proposed by Johansson [6].
A complete description of the plant and the models can be found in Deliverables D4.3.1 and D4.4.1
and in [2]

The following experiment is defined in which the control objective is to follow aset of reference
changes in the levels of tanks 1 and 2,h1 andh2, by manipulating the inlet flowsqa andqb based on
the measured levels of the four tanks:

• The first set-points are set tos1 = s2 = 0.65 m. These are aimed to steer the plant to the operating
point and guarantee identical initial conditions for each controller. Once the plant reaches the
operating point the benchmark starts maintaining the operation point for 300 seconds.

• In the first step, the set-points are changed tos1 = s2 = 0.3 m for 3000 seconds.

• Then, the set-points are changed tos1 = 0.5 m ands2 = 0.75 m for 3000 seconds.

• Finally, the set-points are changed tos1 = 0.9 m ands2 = 0.75 m for another 3000 seconds. To
perform this change tanks 3 and 4 have to be emptied and filled respectively.

The set-point signals are shown in Figure 2.1. The control test duration is3 hours and 20 minutes.
It is important to remark that the set-points have been chosen in such a way that large changes in
the different equilibrium points are involved. This is illustrated in Figure 2.2, where the region of
admissible sets points is depicted together with the proposed set-points. Notice that some of them
close to the physical limits of the plant in terms of inputs or level of the tanks 3 and4.

The objective of the benchmark is to design distributed MPC controllers to optimize the perfor-
mance index

J =
Nsim−1

∑
i=0

(h1(i)−s1(i))
2+(h2(i)−s2(i))

2+0.01(qa(i)−qs
a(i))

2+0.01(qb(i)−qs
b(i))

2

whereqs
a andqs

b are the steady manipulable variables of the plant for the set-pointss1 ands2 calculated
from steady conditions of the proposed model of the plant. The tested controllers have been designed
using a sampling time of 5 seconds. The performance index measures the response of the plant once
it has been steered to the operation point. ThenJ is calculated during the time period[2700,12000]
seconds, that is, for a total ofNsim= 1860 samples.

2.2 Evaluation results

2.2.1 Evaluation of the controllers

Table 2.1 shows some qualitative properties of these controllers. The entryModel Requirements
shows whether the controllers need full or partial knowledge of the system and whether the model
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Figure 2.1: Set-point signals for the benchmark
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Figure 2.2: Set of admissible set-points.

used is linear or nonlinear. The entryControl Objectivesshows whether the controller is optimal from
a centralized point of view (i.e., provides the same solution as the centralized MPC for regulation),
guarantees constraint satisfaction if a feasible solution is obtained and whether it can be designed to
guarantee closed-loop stability in a regulation problem. TheAuxiliary Softwareentry shows which
type of additional software is needed by each controller of the distributed scheme.

The two centralized controllers are based on a linear model of the full plantand are included as
a reference for the performance of the distributed MPC schemes. Note that if the controllers could
communicate without limits, they would be able to obtain the optimal centralized solution.On the
other hand, the decentralized controller provides a reference on whatcan be achieved with no com-
munication among the controllers at all. All the distributed predictive controllersassume that each
agent has access only to its local state and model. All the controllers are based on linear models.

It is worth noting that the centralized MPC for tracking guarantees closed-loop stability not only
for regulation problems, but also for tracking problems with any given reference at the cost of opti-
mality. The decentralized controller considered cannot guarantee optimality,constraint satisfaction,
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Qualitative properties
Model
Requirements

Control
Objectives

Auxiliary
Software

Centralized Tracking MPC
Linear system
Full model

Suboptimal
Constraints
Stability

QP

Centralized Regulation MPC
Linear system
Full model

Optimal
Constraints
Stability

QP

Decentralized MPC
Linear system
Local model

Suboptimal QP

DMPC Cooperative game
Linear system
Local model
(Full model)

Suboptimal
Constraints
(Stability)

QP

SD-DMPC
Linear system
Local model

Optimal
Constraints

QP

DMPC Bargaining game
Linear system
Local model

Suboptimal
Constraints

NLP

Serial DMPC
Linear system
Local model

Optimal
Constraints

QP

Table 2.1: Table of qualitative properties of each tested controller.

nor stability. Note that in order to guarantee closed-loop stability, the DMPC based on a cooperative
game needs full model knowledge in order to design the optimization problem ofeach agent.

The distributed controllers that guarantee optimality (provided sufficient evaluation time) are the
Serial DMPC and the SD-DMPC. Note that these controllers are also the ones with a larger commu-
nication and computational burden.

Another key issue in distributed schemes is the class of computational capabilities that each con-
troller must have. In particular, for the schemes considered each controller must be able to solve
either QP problems or general nonlinear optimization problems. In the experiments, the controllers
used MATLAB’s optimization toolbox, in particularquadprog andfmincon.

The properties of each of the proposed controllers are discussed andstudied in the previous works
which have been included in the references. Note however, that in general, these properties may not
hold in the proposed benchmark because the theoretical properties oftenassume that there are no
modeling errors or disturbances and that a given set of assumptions hold. We have carried out all the
experiments with the real plant, so there are modeling errors and disturbances. In addition, although
most of the controllers are defined for regulation, the benchmark is a reference tracking problem.
Issues such as steady state error and disturbance estimation play a relevant role in this benchmark.

2.2.2 Evaluation of the experimental results

The experimental results demonstrate how centralized solutions provide the best performance while
the performance of a fully decentralized controller is worse. Distributed schemes in which the con-
trollers communicate in general improve this performance, although the experimental results also
demonstrate that a distributed MPC scheme is not necessarily better (according to a certain perfor-
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mance index) than a decentralized scheme and it depends on the formulation of the controller and its
design.

It is also clear how those controllers that incorporate offset-free techniques (the MPC for tracking,
the MPC for regulation and the SD-DMPC with Kalman Filter) provide a better performance index.
In order to obtain a measure of the performance without the effect of the steady offset, the transient
performance indexJt has been calculated. This index is evaluated computing the cumulated cost
during the transient. The entryts shows the cumulated settling times of the three reference changes.
This shows that those offset-free controllers have a transient performance index similar to the total
performance index while for the rest of the controllers, the transient index is better. Note that this
index only evaluates the performance during the transient and does not take into account steady state
errors. It can be seen that the decentralized scheme shows the shortest settling timets and the best
transient performanceJt , although this controller exhibits the worst overall performanceJ. This is due
to the fact that the controller reaches a equilibrium point of the controlled system quite fast far from
the real set-point.

All the controllers were implemented using a MATLAB function and were not designed to opti-
mize the computational time. For this reason, the computation time has not been takeninto account.
Computation time has been approximately one second for all controllers. These computation times
were lower than the sampling time chosen for each controller and moreover, they could be dramati-
cally reduced using an appropriate implementation framework.

Motivated by these issues, the computational burden is best measured on the number and size
of the optimization problems solved at each sampling time. The centralized schemessolve a single
QP problem with 2N optimization variables while the decentralized controller solves 2 QP problems
with N optimization variables. The difference in the computational burden between these schemes
grows with the prediction horizon and the number of subsystems. Distributed schemes try to find a
trade-off between the burden of computation and communication, and optimality.The DMPC based
on a cooperative game and the DMPC based on a bargaining game solve a fixed number of low
complexity optimization problems. SD-DMPC and Serial DMPC provide optimality at the cost of a
higher computational burden.

On the other hand, the communicational burden of each controller is measured by the mean num-
ber of floating point numbers that have to be transmitted each sampling time by each agent and the
number of communication cycles involved. It can be seen that iterative DMPCschemes (SD-DMPC
and Serial DMPC) in general need to transmit a larger amount of information, while the two con-
trollers based on game theory reach suboptimal cooperative solutions with alower communicational
burden.

The centralized and distributed predictive controllers tested can potentially deal with the satisfac-
tion of hard constraints in the inputs and states of the plant. The experiments demonstrates that all
the controllers deal with the limits of the inputs maintaining the feasibility, stability and closed-loop
performance. However, the constraints on the states are not active throughout the evolution of the
controlled system although there exists states close to the physical limits of the plant. This proves that
the tested controllers are capable to take into account the constraints in the calculation of the control
action. Besides, the stability, recursive feasibility and constraint satisfaction properties hold in the real
experiments, where disturbances and model mismatches between the prediction model and the plant
are present.
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Control performance J Jt ts N # floats # trans
Centralized Tracking MPC 28.4 28.12 3280 5 N.D N.D.
Centralized Regulation MPC 25.46 23.78 2735 5 N.D N.D.
Decentralized MPC 39.54 21.2 1685 5 0 0
DMPC Cooperative game 30.71 28.19 2410 5 20 3
SD-DMPC (w/o KF) 35.65 23.28 2505 100 33 10
SD-DMPC (with KF) 28.61 28.26 1895 100 33 10
DMPC Bargaining game 46.32 39.52 3715 5 6 2
Serial DMPC 44.59 41.94 3130 5 10 [2,7]

Table 2.2: Table of the quantitative benchmark indexes of each tested controller

2.3 Conclusions

In this chapter, the results of the HD-MPC four-tank benchmark have been presented. In this bench-
mark, different MPC controllers were applied to the four-tank process plant. These controllers were
based on different models and assumptions and provide a broad view of the different distributed MPC
schemes developed within the HD-MPC project. The results obtained show how distributed strate-
gies can improve the results obtained by decentralized strategies using the information shared by the
controllers.
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Chapter 3

An Output Feedback Distributed
Predictive Control Algorithm

3.1 Introduction

In this chapter, the state feedback DPC algorithm presented in [4] is extended to the output feedback
case by the use of standard Luenberger observers for the estimation ofthe subsystems’ states. It is
proven that, under standard assumptions in MPC, the closed-loop system enjoys stability properties,
in the sense that the subsystems’ state trajectories starting from given sets inthe state space converge
to the origin. This result is achieved by considering the state estimation error asa further disturbance
to be rejected by the control system. Notably, the same considerations developed in the chapter in
order to obtain the convergence results can be used to show the robustness of the proposed approach
also with respect to exogenous unknown (but bounded) disturbances.
The chapter is organized as follows. In Section 3.2 the partitioned system is introduced, while the
output feedback DPC algorithm is defined in Section 3.3. The main convergence results are presented
in Section 3.4. Section 3.5 illustrates a simulation example, and some conclusions are drawn in
Section 3.7. For clarity of presentation, all the proofs are postponed to theAppendix.
Notation. We say that a matrix is Schur if all its eigenvalues lie in the interior of the unit circle. We use
the short-handv = (v1, . . . ,vs) to denote a column vector withs (not necessarily scalar) components
v1, . . . , vs. The symbol⊕ denotes the Minkowski sum, namelyC = A⊕B if and only if C = {c : c=
a+b, for all a∈ A,b∈ B}. We also denote

⊕M
i=1Ai = A1⊕·· ·⊕AM. For a discrete-time signalst and

a,b∈ N, a≤ b, we denote(sa,sa+1, . . . ,sb) with s[a:b]. A continuous functionα : R+ → R+ is aK∞
function iff α(0) = 0, it is strictly increasing andα(s)→ +∞ ass→ +∞. Finally, λM(·) andλm(·)
denote the maximum and the minimum eigenvalue of a matrix, respectively.

3.2 Partitioned systems

Consider a large-scale system, which obeys to the linear dynamics

xt+1 = Axt +But

yt = Cxt
(3.1)

wherext ∈ R
n is the state vector, andut ∈ R

m and yt ∈ R
p are the input variable and the output

variable, respectively.
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Let the system (3.1) be partitioned inM low order interconnected non overlapping subsystems, where
a generic submodel hasx[i]t ∈R

ni as state vector, i.e.,xt = (x[1]t , . . . ,x[M]
t ) and∑M

i=1ni = n. According to
this decomposition, the state transition matricesA11∈R

n1×n1, . . . , AMM ∈R
nM×nM of theM subsystems

are diagonal blocks ofA, whereas the non-diagonal blocks ofA (i.e., Ai j , with i 6= j) define the
dynamic coupling between subsystems. Namely, we say that subsystemj is adynamic neighborof
subsystemi if and only if Ai j 6= 0, i.e. the state ofj affects the dynamics of subsystemi. The set of
dynamic neighbors of subsystemi (which excludesi) is denotedNi .
Furthermore, we assume that the inputut and the outputyt can be partitioned intoM input and output
vectorsu[i]t ∈R

mi andy[i]t ∈R
pi , respectively, withi = 1, . . . ,M. We assume thatu[i]t directly affects only

the state of thei-th subsystemx[i]t andy[i]t only depends onx[i]t , for all i = 1, . . . ,M. This implies that
B andC have a block diagonal structureB =diag(B1, . . . ,BM) andC =diag(C1, . . . ,CM), respectively,
whereBi ∈ R

ni×mi andCi ∈ R
pi×ni for all i = 1, . . . ,M. It finally results that thei-th subprocess obeys

to the linear dynamics
x[i]t+1 = Aii x[i]t +Biu

[i]
t +∑ j∈Ni

Ai j x
[ j]
t

y[i]t = Ci x
[i]
t

(3.2)

where we assume that the local states and the local inputs are constrained,i.e., x[i]t ∈ Xi ⊆ R
ni and

u[i]t ∈ Ui ⊆ R
mi , and that the setsXi andUi are convex neighborhoods of the origin. Furthermore we

defineX= ∏M
i=1Xi ⊆R

n andU= ∏M
i=1Ui , which are convex by convexity ofXi andUi , respectively,

for i = 1, . . . ,M.
We also introduce the collective state constraints, involving more than one subsystem’s state

Hs(xt)≤ 0

wheres= 1, . . . ,nc. We say thatHs is a constraint on subsystemi if x[i] is an argument ofHs. We
denote byCi = {s∈ {1, . . . ,nc}: Hs is a constraint oni} the set of constraints on subsystemi. We
say that subsystemj is aconstraint neighborof subsystemi if there exists ¯s∈ Ci such thatx[ j] is an
argument ofHs̄, and we letHi denote the set of the constraint neighbors of subsystemi. Finally we
define, for alls∈ Ci , a functionhs(x[i],x) = Hs(x), wherex[i], thei-th vector component ofx, is not an
argument ofHs(a, ·). WhenX= R

n, U= R
m andnc = 0 we say that the system is unconstrained.

The dynamic coupling terms and the coupled constraints induce an interconnected network of
subsystems, which can be described by means of a directed graphG = (V ,I ), where the nodes in
V are the subsystems and the edge( j, i) in the setI ⊆ V ×V models that the state ofj affects the
dynamics of subsystemi or j is a constraint neighbor ofi. More formally,( j, i) ∈ I if and only if
j ∈ Ni ∪Hi .

3.3 The output feedback DPC algorithm

Our aim is to design, for each subsystemi, an algorithm for computing an input sequenceu[i]t based on
the outputy[i]t and some information which is transmitted by its neighborsNi ∪Hi , which guarantees
closed loop asymptotic convergence to the origin of the state of the large scalesystem (3.1), the mini-
mization of a given local cost function and constraint satisfaction. Given(3.2), for a given subsystem
i we define a local Luenberger observer, which provides an estimate ¯x[i]t of the statex[i]t , based on the
local measurementy[i]t , and the state estimates provided byi-th neighbors, i.e., ¯x[ j]t , j ∈ N j . Namely

x̄[i]t+1 = Aii x̄[i]t +Biu
[i]
t + ∑

j∈Ni

Ai j x̄
[ j]
t −Li(y

[i]
t −Ci x̄

[i]
t ) (3.3)
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Assuming that the decentralized estimator (3.3) enjoys the stability properties specified in the follow-
ing, given the system state initial conditionsx0 and the observer initial conditions̄x0 = (x̄[1]0 , . . . , x̄[M]

0 ),
we require that there exist, for alli = 1, . . . ,M, setsΣi ⊆ R

ni such thatσσσ t = xt − x̄t ∈ ΣΣΣ = ∏M
i=1 Σi for

all t ≥ 0. This amounts to say thatσ [i]
t = x[i]t − x̄[i]t ∈ Σi for all t ≥ 0, for all i = 1, . . . ,M.

Furthermore we set, for each subsystem, a reference trajectory ˜x[i]t which is transmitted to the
subsystems which havei as neighbor. We also assume that one can guarantee that, for allt ≥ 0, the
local state estimate ¯x[i]t lies in a specified time-invariant neighborhood of ˜x[i]t i.e, x̄[i]t − x̃[i]t ∈ Ei , where
0∈ Ei . Note that this, in turn, implies that the real state variablex[i]t is also guaranteed to lie in a given
neighborhood of ˜x[i]t , i.e,x[i]t − x̃[i]t ∈ Ei ⊕Σi for all i = 1, . . . ,M.
Letting w[i]

t = ∑ j∈Ni
Ai j (x̄

[ j]
t − x̃[ j]t )−Li(y

[i]
t −Ci x̄

[i]
t ), thei-th observer equation (3.3) can be written as

follows
x̄[i]t+1 = Aii x̄[i]t +Biu

[i]
t +∑ j∈Ni

Ai j x̃
[ j]
t +w[i]

t (3.4)

where the termw[i]
t ∈Wi =

⊕

j∈Ni
Ai j E j ⊕(−LiCi)Σi represents a bounded disturbance affecting equa-

tion (3.4) and∑ j∈Ni
Ai j x̃

[ j]
t can be considered as a known input. Provided that, for alli = 1, . . . ,M, the

constraint ¯x[i]t − x̃[i]t ∈ Ei is satisfied for allt ≥ 0, we cast the problem of designing an output-feedback
distributed controller for the real system as the problem of designing a robust state-feedback control
law for the subsystem (3.4), for alli = 1, . . . ,M.
For the statement of the local MPC sub-problems (i.e.,i-DPC problems) we rely on the robust MPC
algorithm presented in [8] for constrained linear systems with bounded disturbances, and extended
to the output feedback case in [7]. Although this approach requires a more complex off-line design
phase with respect to robust MPC methods based on the solution of min-max problems, the opti-
mization problems to be solved on-line are of the same order magnitude than the ones required for
non-robust methods.

We define thei-th subsystem nominal model associated to equation (3.4)

x̂[i]t+1 = Aii x̂[i]t +Bi û
[i]
t +∑ j∈Ni

Ai j x̃
[ j]
t (3.5)

The control law, both for the reali-th subsystem (3.2) and for the equation (3.4) will be assigned, for
all t ≥ 0, according to

u[i]t = û[i]t +Kaux
i (x̄[i]t − x̂[i]t ) (3.6)

whereKaux
i is a suitable control gain. Lettingz[i]t = x̄[i]t − x̂[i]t from (3.4) and (3.6) we obtain

z[i]t+1 = (Aii +BiKaux
i )z[i]t +w[i]

t (3.7)

wherew[i]
t ∈Wi . SinceWi is bounded, if(Aii +BiKaux

i ) is Schur, then there exists a robust positively

invariant (RPI) setZi for (3.7) such that, for allz[i]t ∈ Zi , thenz[i]t+1 ∈ Zi . From (3.7) it follows that, if

u[i]k is computed as in (3.6) for allk≥ t, then

x̄[i]t − x̂[i]t ∈ Zi (3.8)

implies that ¯x[i]k − x̂[i]k ∈ Zi for all k≥ t.
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Now write x̄[i]t − x̃[i]t = (x̄[i]t − x̂[i]t )+ (x̂[i]t − x̃[i]t ) and define the setEi for all i = 1, . . . ,M as a set

containing the origin and satisfyingEi ⊕Zi ⊆ Ei . Since, in view of (3.8), ¯x[i]k − x̂[i]k ∈ Zi for all k≥ t, if
we also satisfy the constraint

x̂[i]k − x̃[i]k ∈ Ei (3.9)

for all k≥ t, thenx̄[i]k − x̃[i]k ∈ Ei for all k≥ t as required.
We are now in the position to state the local minimization problem for all subsystems at instantt.
Given the future reference trajectories ofi and its neighbors ˜x[ j]k , k= t, . . . , t+N−1, j ∈Ni ∪Hi ∪{i},
the i-DPC problem consists in the following

min
x̂[i]t ,û[i]

[t:t+N−1]

VN
i (x̂[i]t , û

[i]
[t:t+N−1]) (3.10)

subject to the dynamic and static constraints (3.5), (3.3), (3.6), (3.8), (3.9), to the local state and input
constraints

x̂[i]k ∈ X̂i (3.11)

û[i]k ∈ Ûi (3.12)

whereX̂i ⊕Zi ⊕Σi ⊆ Xi andÛi ⊕Kaux
i Zi ⊆ Ui and to the regional state constraints

ĥ[i]s (x̂
[i]
k , x̃k)≤ 0 (3.13)

for k= t, . . . , t+N−1, for alls∈Ci , where the function̂h[i]s is defined in such a way thatĥ[i]s (x̂
[i]
k , x̃k)≤ 0

guarantees thaths(x
[i]
k ,x

∗
k) ≤ 0 for all x[i]k ∈ x̂[i]k ⊕Zi ⊕Σi andx∗k ∈ x̃k⊕∏M

i=1Ei ⊕ΣΣΣ. Furthermore, the
nominal state trajectory must satisfy the following terminal constraint

x̂[i]t+N ∈ X̂
F
i (3.14)

whereX̂F
i is thei-th nominal subsystem terminal set, whose properties will be specified in the follow-

ing.
The cost functionVN

i (x̂[i]t , û
[i]
[t:t+N−1]) is

VN
i (x̂[i]t , û

[i]
[t:t+N−1]) =

t+N−1

∑
k=t

l i(x̂
[i]
k , û

[i]
k )+VF

i (x̂[i]t+N) (3.15)

wherel i : Rni ×R
mi → R+ is the stage cost andVF

i : Rni → R+ is the final cost. From now on, we
assume thatl i is defined in such a way thatl i(0,0) = 0 and that there exists, for alli = 1, . . . ,M, aK∞
functionα and a matrixRi satisfying rank([BT

i RT
i ]

T) = mi such thatl i(x̂[i], û[i])≥ α(‖(x̂[i],Ri û[i])‖) for
all x̂[i] ∈ R

ni , û[i] ∈ R
mi . Note that this assumption can always be fulfilled by a proper choice of the

weightRi in the stage cost.
As in [8], in the stated problem minimization is performed with respect both to the nominal system
initial statex̂[i]t and to the nominal input trajectory ˆu[i][t:t+N−1]. Letting the pair ˆx[i]t/t , û

[i]
[t:t+N−1]/t be the

solution to thei-DPC problem (3.10) at timet, we set the input to the nominal system (3.5), at timet,
asû[i]t/t . According to (3.6), the input to the real system (3.2), at instantt, is

u[i]t = û[i]t/t +Kaux
i (x̄[i]t − x̂[i]t/t) (3.16)
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Furthermore, let us define as ˆx[i]k/t the trajectory stemming from ˆx[i]t/t andû[i][t:t+N−1]/t , in view of equation

(3.5). The value of the reference state variable ˜x[i]t+N is set to

x̃[i]t+N = x̂[i]t+N/t (3.17)

We stress that we do not define, at each instantt, a new reference trajectory ˜x[i]k , k= t+1, . . . , t+N, but

we append the value ˜x[i]t+N to the reference trajectory which has been already defined fork≤ t+N−1.

3.4 Convergence results

The following definitions and assumptions are needed to state the main result ofthe chapter. The sets
of admissible initial conditionsx0, x̄0, andx̃[ j][0:N−1], for all j = 1. . . ,M are defined as follows.

Definition 1 Lettingx = (x[1], . . . ,x[M]), we denote the feasibility regionXN for all the i-DPC prob-
lems as the set

X
N := {x : if x[i]0 = x[i] for all i = 1, . . . ,M

then∃x̄0,(x̃
[1]
[0:N−1], . . . , x̃

[M]
[0:N−1]),(x̂

[1]
0/0, . . . , x̂

[M]
0/0),

(û[1][0:N−1], . . . , û
[M]
[0:N−1]) such that(3.2), (3.8), (3.9),

(3.11)-(3.14)are satisfied for all i= 1, . . . ,M}

We denote, for eachx ∈ X
N, the region of feasible initial state estimates. Lettingx̄ = (x̄[1], . . . , x̄[M])

X̄
N
x := {x̄ : if x[i]0 = x[i] andx̄[i]0 = x̄i for all i = 1, . . . ,M

then∃(x̃[1][0:N−1], . . . , x̃
[M]
[0:N−1]),(x̂

[1]
0/0, . . . , x̂

[M]
0/0),

(û[1][0:N−1], . . . , û
[M]
[0:N−1]) such that(3.2), (3.8), (3.9),

(3.11)-(3.14)are satisfied for all i= 1, . . . ,M}

Also, givenx ∈ X
N and x̄ ∈ X̄

N
x , the region of feasible initial reference trajectories is

X̃
N
x,x̄ := {(x̃[1][0:N−1], . . . , x̃

[M]
[0:N−1]) : if x[i]0 = xi andx̄[i]0 = x̄i

for all i = 1, . . . ,M then∃(x̂[1]0/0, . . . , x̂
[M]
0/0),

(û[1][0:N−1], . . . , û
[M]
[0:N−1]) such that(3.2), (3.8), (3.9),

(3.11)-(3.14)are satisfied for all i= 1, . . . ,M}

Assumption 1 Letting L =diag(L1, . . . ,LM), the matrixA +LC is Schur. Furthermore, there exist,
for all i = 1, . . . ,M, setsΣi ⊂ R

ni such thatΣΣΣ is a positively invariant set for the systemσσσ t+1 =
(A+LC)σσσ t .

Assumption 2 The matrix Aii +BiKaux
i is Schur, for all i= 1, . . . ,M.

Assumption 3 LettingKaux=diag(Kaux
1 , . . . ,Kaux

M ), X̂= ∏M
i=1 X̂i , Û= ∏M

i=1 Ûi andX̂F = ∏M
i=1 X̂

F
i , it

holds that:

(i) The matrixA+BKaux is Schur;
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(ii) Ĥ [i]
s (x̂)≤ 0 for all x̂ ∈ X̂

F , for all s∈ Ci , for all i = 1, . . . ,M, whereĤ [i] is defined in such a way

that Ĥ [i]
s (x̂) = ĥ[i]s (x̂[i], x̂) for all s∈ Ci , for all i = 1, . . . ,M.

(iii) X̂
F ⊆ X̂ is an invariant set for̂x+ = (A+BKaux)x̂;

(iv) û = Kauxx̂ ∈ Û for any x̂ ∈ X̂
F ;

(v) for all x̂ ∈ X̂
F and, for a given constantκ > 0

VF (x̂+
)

−VF (x̂)≤−(1+κ)l(x̂, û) (3.18)

where VF(x̂) = ∑M
i=1VF

i (x̂[i]) and
l(x̂, û) = ∑M

i=1 l i(x̂[i], û[i]).

Assumption 4 Given the setsEi and the RPI sets Zi for equations(3.7), there exists a real positive
constantρ̄E > 0 such that Zi ⊕Bρ̄E(0) ⊆ Ei for all i = 1, . . . ,M, whereBρ̄E(0) is a ball of radius
ρ̄E > 0 centered at the origin.

Proper ways to select the design parameters fulfilling Assumptions 2-4 are discussed in the pa-
per [5], where arguments similar to the ones introduced in [9] and [3] are employed.
Now we are in the position to state the main result.

Theorem 1 Let Assumptions 1-4 be satisfied and let Ei be a neighborhood of the origin satisfying
Ei ⊕Zi ⊆ Ei . Then, for any initial reference trajectory iñXN

x0,x̄0
, the trajectoryxt , starting from any

initial conditionx0 ∈ X
N, x̄0 ∈ X̄

N
x0

, asymptotically converges to the origin.

3.5 Example

Consider the example illustrated in Figure 3.1 consisting in four trucks with masses m1 = 3, m2 = 2,
m3 = 3, m4 = 6, each endowed with an individual engine (exerting the force 100u[i]t , i = 1, . . . ,4).
Trucks 1 and 2 (respectively 3 and 4) are dynamically coupled through aspring and a damper, whose
coefficients arek12 = 0.5 andh12 = 0.2 (k34 = 1 andh34 = 0.3), respectively. The components of the

x
[1];1
k x

[2];1
k x

[3];1
k x

[4];1
k

k12 k34

h12 h34

m1 m2 m3 m4

Figure 3.1:Illustration of the example.

2-dimensional state vectorx[i]t of the i-th truck represent the displacement ofi with respect to a given
equilibrium position (i.e.,x[i],1k ) and the absolute velocity of the truck. For alli = 1, . . . ,4, positions
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are measured, i.e.,y[i]k = x[i],1k . The following constraints are set to the input signals:|u[i]k | ≤ 0.5 for

i = 1, . . . ,3 and|u[4]k | ≤ 1. The model is discretized with sampling intervalτ = 0.1 s. We set the

observer’s initial conditions to ¯x[i]0 = [5, 0]T and the real system initial conditions are randomly gen-

erated in such a way thatx[i]0 − x̄[i]0 ∈ Σi , whereΣi , satisfying Assumption 1 (Li are defined by pole
assignment, where the poles of the local systems are 0.5 and 0.6 for all i), are shown in Figure 3.2.

Figure 3.2:SetsΣi , i=1,. . . , 4.

We define the decentralized control law by pole assignment (the poles of thelocal systems are 0.5
and 0.6 for all i).
We properly define quadratic weighting functions and we set setsEi , Zi andEi as in Figure 3.3 (for
details see [5]).
The initial position reference trajectories are exponential, starting from theinitial conditions, with

decaying rate 0.96. The velocity reference trajectories are computed coherently with the position
reference trajectories, andN = 30. In Fig. 3.4 the plots of the optimal input trajectories obtained with
DPC are shown, and in Fig. 3.5 we show the obtained optimal trajectories of thestate.

3.6 Proof of Theorem 1

3.6.1 The collective problem

Define the collective vectors x̂t = (x̂[1]t , . . . , x̂[M]
t ),

x̃t = (x̃[1]t , . . . , x̃[M]
t ), ût = (û[1]t , . . . , û[M]

t ), wt = (w[1]
t , . . . ,w[M]

t ) andzt = (z[1]t , . . . ,z[M]
t ). Furthermore, de-
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Figure 3.3:SetsEi , Zi , Ei , i = 1, . . . ,4.

fine the matrices
A∗ =diag(A11, . . . ,AMM), Ã = A−A∗. Collectively, we write equations (3.3), (3.4), and (3.5) as

x̄t+1 = Ax̄t +But −L(yt −Cx̄t) (3.19)

x̄t+1 = A∗x̄t +But + Ãx̃t +wt (3.20)

x̂t+1 = A∗x̂t +Bût + Ãx̃t (3.21)

In view of (3.6)

ut = ût +Kaux(x̄t − x̂t) (3.22)

and we collectively write (3.7) as

zt+1 = (A∗+BKaux)zt +wt (3.23)

Since eachi-DPC problem depends upon local variables (the coupling terms ˜x[i]k are fixed fork =
t, . . . , t +N−1), minimizing (3.10) for alli = 1, . . . ,M is equivalent to minimize

VN∗(x̄t) = min
x̂t ,û[t:t+N−1]

VN(x̂t , û[t:t+N−1]) (3.24)

subject to the dynamic constraints (3.21), (3.19), (3.22), the static constraints

x̄t − x̂t ∈ Z=
M

∏
i=1

Zi (3.25a)
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Figure 3.4:Input trajectories. Left:u[i]t (solid line), thresholds foru[i]t (dotted lines). Right: ˆu[i]t (solid line),

thresholds for ˆu[i]t/t (dotted lines).

x̂k− x̃k ∈ E=
M

∏
i=1

Ei (3.25b)

x̂k ∈ X̂ (3.25c)

ûk ∈ Û (3.25d)

H(x̂k,x̃k)≤ 0 (3.25e)

for k= t, . . . , t +N−1, and the terminal constraint

x̂t+N ∈ X̂
F (3.26)

In (3.25),H collects all the constraints (3.13) and note that, by(ii) in Assumption 3,H(x̂, x̂) ≤ 0 for
all x̂ ∈ X̂

F . The collective cost functionVN is defined as

VN(x̂t , û[t:t+N−1]) =
t+N−1

∑
k=t

l(x̂k, ûk)+VF (x̂t+N)

We also define

VN,0(x̂t) = min
û[t:t+N−1]

VN(x̂t , û[t:t+N−1]) (3.27)

subject to the dynamic constraints (3.21) and the static constraints (3.25b)-(3.26).
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Figure 3.5:Controlled state variables with DPC (solid lines) first entries ofx̃[i]t (dotted lines) and of ˆx[i]t/t (dashed
lines).

3.6.2 Feasibility

From Definition 1, it collectively holds that

X
N = {x : if x0 = x then∃x̄0, x̃[0:N−1], x̂0/0, û[0,N−1]

such that (3.21), (3.25) and (3.26) are satisfied}

For each point of the feasibility setx ∈ X
N

X̄
N
x := {x̄0 : if x0 = x andx̄0 = x̄ then∃x̃[0:N−1], x̂0/0, û[0,N−1]

such that (3.21), (3.25) and (3.26) are satisfied}

Finally, if x ∈ X
N, x̄ ∈ X̄

N
x

X̃
N
x,x̄ := {x̃[0:N−1] : if x0 = x andx̄0 = x̄ then∃x̂0/0, û[0,N−1]

such that (3.21), (3.25) and (3.26) are satisfied}

Assume that, at instantt, xt ∈ X
N, x̄t ∈ X̄

N
xt

, and thatx̃[t:t+N−1] ∈ X̃
N
xt ,x̄t

. The optimal nominal
input and state sequences obtained by minimizing the collective MPC problem are û[t:t+N−1]/t =
{ût/t , . . . , ût+N−1/t} andx̂[t:t+N]/t = {x̂t/t , . . . , x̂t+N/t}, respectively. Finally, recall that it is setx̃t+N =
x̂t+N/t .

Denoteût+N/t = Kauxx̂t+N/t and x̂t+N+1/t = A∗x̂t+N/t +Bût+N/t + Ãx̃t+N. Sincex̃t+N = x̂t+N/t ,
the latter is equivalent tôxt+N+1/t = (A+BKaux)x̂t+N/t .
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Note that, in view of constraint (3.26) and Assumption 3,ût+N/t ∈ Û andx̂t+N+1/t ∈ X̂
F . There-

fore, they satisfy constraints (3.25c), (3.25d) and (3.26). Also, according to Assumption 3, (3.18)
holds.
We also define the input sequence

û[t+1:t+N]/t = {ût+1/t , . . . , ût+N−1/t , ût+N/t}

and the state sequence stemming from the initial conditionx̂t+1/t and the input sequencêu[t+1:t+N]/t

i.e.,
x̂[t+1:t+N+1]/t = {x̂t+1/t , . . . , x̂t+N/t , x̂t+N+1/t}

Notice thatxk− x̄k ∈ ΣΣΣ for all k= t, . . . , t+N−1 from Assumption 1, and that, in view of (3.25a)-
(3.25b),wk ∈ ∏M

i=1Wi for all k = t, . . . , t +N−1. In view of the feasibility of thei-DPC problem at
time t, we have that̄xt+1− x̂t+1/t ∈ Z andx̂k/t − x̃k ∈ ∏M

i=1E for all k= t +1, . . . , t +N−1. Note also
thatx̂t+N/t − x̃t+N = 0∈ E by (3.17). Furthermore, sincẽxt+N = x̂t+N/t andx̂t+N ∈ X̂

F , from (3.26) it
holds thatH(x̂t+N/t , x̃t+N) ≤ 0 from (ii) of Assumption 3. Therefore, we can conclude that the state
and the input sequencesx̂[t+1:t+N+1]/t andû[t+1:t+N]/t are feasible att+1, since constraints (3.25) and
(3.26) are satisfied. This proves thatxt ∈ X

N, x̄t ∈ X̄
N
xt

andx̃[t:t+N−1] ∈ X̃
N
xt ,x̄t

implies thatxt+1 ∈ X
N,

x̄t ∈ X̄
N
xt+1

andx̃[t+1:t+N] ∈ X̃
N
xt+1,x̄t+1

.

3.6.3 Convergence of the optimal cost function

By optimality,VN,0(x̂t+1/t)≤ VN(x̂t+1/t , û[t+1:t+N]/t), where

VN(x̂t+1/t , û[t+1:t+N]/t) =
t+N

∑
k=t+1

l(x̂k/t , ûk/t)+VF (x̂t+N+1/t

)

(3.28)

Therefore we compute that

VN,0(x̂t+1/t)−VN,0(x̂t/t)≤−l(x̂t/t , ût/t)+ l(x̂t+N/t , ût+N/t)+

+VF (x̂t+N+1/t

)

−VF (x̂t+N/t

)

(3.29)

In view of (3.18)
VF

(

x̂t+N+1/t

)

−VF
(

x̂t+N/t

)

+ l(x̂t+N/t , ût+N/t)≤

−κ l(x̂t+N/t , ût+N/t)

and so, from (3.29), it follows that

VN,0(x̂t+1/t)≤ VN,0(x̂t/t)− l(x̂t/t , ût/t)−κ l(x̂t+N/t , ût+N/t) (3.30)

Recall the definition ofl i and of matrixRi , for all i = 1, . . . ,M, and defineR =diag(R1, . . . ,RM).
Then, there exists aK∞ functionαL such thatl(x̂, û) ≥ αL(‖(x̂,Rû)‖) for all x̂ ∈ R

n, û ∈ R
m. This

implies thatl(x̂, û)≥ αL(‖x̂‖) for all x̂ ∈ R
n, û ∈ R

m. Therefore

VN,0(x̂t+1/t)≤ VN,0(x̂t/t)−αL(‖x̂t/t‖)−καL(‖x̃t+N‖) (3.31)

for all feasible sequencesx̃k, k= t, . . . , t +N−1.
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Now we analyze the properties of the cost functionVN∗(x̄t) defined in (3.24). First, note that, by
definition of x̂t/t , we have thatVN∗(x̄t) = VN,0(x̂t/t). By optimality, we have that

VN∗(x̄t+1) = VN,0(x̂t+1/t+1)≤ VN,0(x̂t+1/t)

Considering (3.31), we obtain that

VN∗(x̄t+1)≤ VN∗(x̄t)−αL(‖x̂t/t‖)−καL(‖x̃t+N‖) (3.32)

for all x̄t ∈ X̄
N
xt

, beingxt ∈ X
N, and for all sequences̃x[t:t+N−1] ∈ X̃N

xt ,x̄t
. This proves that‖x̂t/t‖ → 0

and‖x̃t‖→ 0 ast →+∞.

3.6.4 Convergence of the trajectories

Let δF be a positive real number such that, if‖x̂k‖ < δF , ‖x̃k‖ < δF , k = t, . . . , t +N and‖ûk‖ < δF ,
k= t, . . . , t +N−1, then constraints (3.25b)-(3.26) are satisfied.
Define a sequencex∗k/t , k= t, . . . , t+N, stemming from the initial conditionx∗t/t = x̂t/t , whose dynam-
ics obeys to (3.21), and where the input isûk = u∗

k/t = Kauxx∗k/t , for all k= t, . . . , t+N−1. Then there
exists a positive real numberδx < δF such that, if‖x̂t/t‖< δx and‖x̃k‖< δx for k= t, . . . , t+N−1, then
‖x∗k/t‖< δF , k= t, . . . , t +N, and‖u∗

k/t‖< δF , k= t, . . . , t +N−1. In fact, denotingF = A∗+BKaux,
from (3.21), fori ≥ 1

x∗t+i/t = Fi x̂t/t +
i−1

∑
j=0

F j Ãx̃t+i− j−1 (3.33)

and‖x∗t/t‖= ‖x̂t/t‖< δx < δF , ‖x∗t+i/t‖< maxi=1,...,N ‖Fi +∑i−1
j=0F j Ã‖δx and‖u∗

k/t‖ ≤ ‖Kaux‖‖x∗k/t‖.
Therefore, for a suitableδx, if ‖x̂t/t‖ < δx and‖x̃k‖ < δx, k = t, . . . , t +N− 1, then the trajectories
x∗k/t , k = t, . . . , t +N andu∗

k/t , k = t, . . . , t +N−1 are feasible (since alsôxt/t satisfies (3.25a) for the
feasibility of thei-DPC problem at timet).

Since‖x̂t/t‖ → 0 and‖x̃t‖ → 0 ast →+∞, there exists̄t > 0 such that‖x̂t/t‖< δx and‖x̃t‖< δx

for all t ≥ t̄, which makes the trajectoriesx∗k/t , k= t, . . . , t +N, andu∗
k/t , k= t, . . . , t +N−1, feasible

for all t ≥ t̄. By optimality, if t ≥ t̄

VN∗(x̄t) = VN,0(x̂t/t)≤
t+N−1

∑
k=t

l(x∗k/t ,u
∗
k/t)+VF

(

x∗t+N/t

)

(3.34)

Recall (3.18). SinceVF ≥ 0 by definition, one has thatl(x∗k/t ,u
∗
k/t)≤

1
1+κ VF

(

x∗k/t

)

≤ VF
(

x∗k/t

)

and,

from (3.34)

VN∗(x̄t)≤
t+N

∑
k=t

VF
(

x∗k/t

)

(3.35)

From (3.33) and (3.35), we obtain that, for allt ≥ t̄, there exists aK∞ functionβ such that

VN∗(x̄t)≤ β (‖(x̂t/t , x̃[t:t+N−1])‖) (3.36)

For this it follows thatVN∗(x̄t)→ 0 ast →+∞.
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Recall that̂xk/t is generated according to (3.21), stemming from the optimal initial conditionx̂t/t

and inputŝuk/t . One can write the solution to (3.21) asx̂t+i/t = vt+i/t +BiUt , where

vt+i/t = (A∗)i x̂t/t +
i−1

∑
j=0

(A∗) j Ãx̃t+i− j−1,

Bi =
[

(A∗)i−1B . . . B 0 . . . 0
]

if i = 1, . . . ,N, Ut = (ût/t , . . . , ût+N−1/t). Note that, since‖x̂t/t‖ → 0 and‖x̃t‖ → 0 ast → +∞, also
‖vk/t‖→ 0 ast →+∞ for all k= t +1, . . . , t +N. We also denotevt/t = x̂t/t andB0 = 0n×Nm.

Now, consider again the functionVN∗(x̄t):

VN∗(x̄t) =
t+N−1

∑
k=t

l(vk/t +Bk−tUt , ûk/t)+VF (vt+N/t +BNUt
)

(3.37)

From the definition ofl i it follows that l(x̂k, ûk)≥ αL(‖(x̂k,Rûk)‖), and so

0≤ ∑t+N−1
k=t αL(‖(vk/t +Bk−tUt ,Rûk/t)‖)

+VF
(

vt+N/t +BNUt
)

≤ VN∗(xt)

Since it is proved thatVN∗(x̄t)→ 0 ast →+∞, it follows that, for allk= t, . . . , t +N−1

αL(‖(vk/t +Bk−tUt ,Rûk/t)‖)→ 0

andVF
(

vt+N/t +BNUt
)

→ 0 ast →+∞. This implies that:

BUt +Vt → 0 (3.38)

ast → ∞, where

B=

[

B̄

diag(R, . . . ,R)

]

, B̄ =
[

BT
0 . . . BT

N

]T

andVt = (vt/t , . . . ,vt+N/t ,0, . . . ,0). It is readily seen that, in view of the triangular structure ofB̄ and

since, by definition ofRi , i = 1, . . . ,M, rank
(

[

BT RT
]T
)

= m then rank(B) = Nm. SinceVt → 0 as

t →+∞, from (3.38) it follows thatUt → 0 ast →+∞. Thereforeût/t → 0 ast →+∞.

Finally, recall that the statext and its estimatēxt evolve according to the equations
{

xt+1 = Axt +B
[

ût/t +Kaux(x̄t − x̂t/t)
]

x̄t+1 = Ax̄t +B
[

ût/t +Kaux(x̄t − x̂t/t)
]

−LC(xt − x̄t)

Recalling thatσσσ t = xt − x̄t , the dynamics of(σσσ t , x̄t) is given by
{

σσσ t+1 = (A+LC)σσσ t

x̄t+1 = (A+BKaux)x̄t −LCσσσ t +B
(

ût/t −Kauxx̂t/t

)

By asymptotic convergence to zero of the nominal state and input signalsx̂t/t andût/t respectively,
we obtain that

B
(

ût/t −Kauxx̂t/t

)

is an asymptotically vanishing term. Since(A+BKaux) and (A+LC) are
Schur by Assumption 3 and 1, we obtain thatσσσ t → 0 andx̄t → 0 ast → +∞, from which it follows
thatxt = x̄t +σσσ t → 0 ast →+∞.
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3.7 Conclusions

The output feedback distributed predictive control algorithm presentedin this chapter has many fea-
tures which make it suited for practical applications, such as the limited mutual knowledge and ex-
change of information among neighbors, the possibility to handle local and global state and control
constraints, and guaranteed convergence properties.
However, a number of significant developments are required to completely exploit the potentialities of
the approach in many significant practical cases. Among them, the solution ofthe tracking problem for
constant reference signals and the possibility to include in the problem formulation joint (cooperative)
goals for the subsystems will be considered in the near future.
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